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Abstract--A linear analysis of the stability of the flow in a laminar boundary layer under conditions of 
intensive interphase mass transfer between gas and liquid film, when high mass fluxes through the phase 
boundary induce secondary flows, is suggested. The influence of the interface velocity on the hydrodynamic 
stability of the gas flow is significant in the present case. The critical Reynolds numbers are obtained at 
different intensities of non-linear mass transfer in a laminar boundary layer. The influence of the direction 
of the intensive interphase mass transfer on the hydrodynamic stability is shown as well. The motion of 
the interface leads to a decrease of velocity gradients, which is the cause for an increase in stability of the 
flow. The flow is stable at large Reynolds number in the liquid phase. The dependencies of the critical 
Reynolds numbers from the normal and tangential component of the interface velocity are shown. Stability of 
the flow is more 'sensitive' to a change in the normal component. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

The first three reports [1-3] show that the hydro- 
dynamic stability of  flow in the boundary layers 
over a fiat interface depends on the direction and rate 
of  the intensive interphase mass transfer. The results 
obtained for gas-l iquid and l iquid-l iquid systems 
show [2, 3] that the stability of  the flow in the bound- 
ary layer depends considerably on the interface 
velocity. This velocity is a result of  superposed influ- 
ence of  the flux of  momentum (hydrodynamic inter- 
action between two phases) and the mass flux 
(inducing of  parallel secondary flows) through the 
phase boundary. Based on the above, the study of  the 
influence of  the normal  and the tangential components  
of  the interface velocity on the hydrodynamic stability 
of  the velocity profiles has to be developed. For  
the practical and interesting gas-liquid film flow 
system this compound crossed effect can be observed 
in detail. 

2. NON-LINEAR MASS TRANSFER IN GAS- 
LIQUID FILM FLOW SYSTEMS 

Non-l inear  mass transfer under conditions of  inten- 
sive interphase mass transfer between gas and liquid 
film flow was the subject of  numerical and asymptotic 
analysis [4, 5]. The results obtained show that the 
above mentioned crossed influence manifests itself 
when the diffusion resistance is localized in the gas 
phase. In this case the velocity distribution in gas can 
be expressed using the similarity variables 

a = aof(~),  ~ = 0.5 ( ~ f ' - f ) ,  

Table 1. Initial values off ,  its derivatives and parameter k 
(in gas phase, e = 1, 0] = 0.15, 03 = 0) 

0 f(0) f ' (0) f"(0) k 

-0.3 0.30411 0.225 0.39250 0.702 
-0 .2  0.18788 0.225 0.36000 0.871 
-0.1 0.08729 0.225 0.33240 1.023 

0 0 0.225 0.30890 1.158 
0.1 -0.07632 0.225 0.28900 1.278 
0.2 -0.14399 0.225 0.27175 1.387 
0.3 -0.20536 0.225 0.25650 1.486 

ftT0'~° s 
' ( 1 )  

wheref(~)  is the solution of  the problem 

2f'" - f f "  = O, 

f (0 )  = a, f ' ( 0 )  = b, f " (0 )  = c. (2) 

The associated set of  initial conditions is obtained 
in refs. [4, 5] and presented in Table 1, where the 
parameter k is determined by expression 

k = ) i m ( { f ' - f ) .  (3) 

3. STABILITY ANALYSIS 

The linear analysis of  the stability of  velocity pro- 
files f ' ( 0 )  was carried out in the cases [4] where the 
hydrodynamic interaction between gas and liquid film 
flow is determined by parameters 
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a 

A 
b 

C 
D 

f 
k 
M 
Re 
U 

X 

Y 

NOMENCLATURE 

initial value of  the Blasius function 
dimensionless wave number 
initial value of  first derivative of  the 
Blasius function 
concentration, initial value of  second 
derivative of  the Blasius function 
dimensionless phase velocity 
diffusion coefficient 
Blasius function 
parameter 
molecular mass 
Reynolds number 
velocity of  basic stationary flow in x 
direction 
velocity of  basic stationary flow in y 
direction 
coordinate 
coordinate. 

Greek symbols 
c parameter 
0 parameter 
v kinematic viscosity 

variable 
p density 
Z Henry number. 

Subscripts and superscripts 
* conditions of  transferred substance 
0 conditions in volume 
cr critical number 
i imaginary part of  complex number 
max maximum 
min minimum 
r real part of  complex number. 

e = ( f / / ~ ) ' 2  = 1, 0, = u °  =0 .15 ,  
U0 

M 
03 = - Oe = P~oo(go -- Zc0), (4) 

where M is the molecular mass of  the transferred sub- 
stance between phases, c0 is the initial concentration 
of  the transferred substance in the liquid, Z is the 
Henry's  number, while the parameters for the gas 
phase ~, /), ~70, c5), p* are the dynamic viscosity 
coefficient, the diffusivity of  the transferred substance, 
the initial velocity, the initial concentration and the 
phase boundary density, respectively. 

The initial conditions associated with equation (2) 
were obtained considering equation (4) for different 
values of  0 (Table 1) and they permit us to solve the 
problem (2) as a problem of Cauchy, as well as the 
introduction ofJ(~)  into the Orr-Sommerfeld  equa- 
tion. The Orr-Sommerfeld  equation was solved anal- 
ogously to that one in ref. [1]. The neutral curves and 
critical Reynolds numbers for different values of  the 
dimensionless phase velocity (CO and length number 
(A) are obtained. 

4. RESULTS AND DISCUSSION 

The neutral curves (Re, A)  and (Re, CO are shown 
in Figs. 1 and 2. They allow us to obtain the critical 
Reynolds numbers (Reef), which are presented in 
Table 2. Analogously to refs. [1-3], these results show 
the fact that the stability of  the flow decreases with 
the rise of  the parameter 0. 

The results presented in Table 2 and the analogous 
ones in refs. [1-3] permit us to study the influence of  
the tangential interface velocity component  (f ' (0))  on 

Table 2. Values of the critical Reynolds numbers Re~r, wave 
velocities C, wave numbers A and C~ m~,, Amen obtained (in 

gas phase, at the conditions oft: = 1, 0~ = 0.15, 03 = 0) 

O Rec~ A C~ Jr rain Cr min 

0.3 3760 0.280 0.4566 0.310 0.4576 
-0.2 2484 0.290 0 .4748 0 . 3 2 8  0.4760 
-0.1 1714 0.305 0 .4922 0.347 0.4928 

0 1239 0.310 0.5064 0 .361  0.5083 
0.1 941 0.320 0.5200 0.376 0.5219 
0.2 743 0 . 3 2 5  0.5311 0.390 0.5338 
0.3 605 0.340 0 .5429 0.402 0.5449 

the stability of  the flow (Reef). These results are shown 
in Fig. 3 at 0 = const. They clearly present a well- 
pronounced dependence, i.e. the rise of  interface vel- 
ocity leads to stabilizing of  the flow. 

The significant influence of  the normal velocity on 
the interface f(0) upon the stability of  the flow was 
shown in refs. [1-3]. Considering this, the dependence 
of Rec,. from f ' (O)  at f(0) = const is of  great interest. 
It is presented in Fig. 4 and demonstrates one much 
better expressed dependence. 

The results obtained so far allow to obtain the 
dependence of  the critical Reynolds number Recr from 
the normal component  of  velocity on interface f(0) at 
the condition of  constant value of  tangential interface 
velocity component  f ( 0 ) .  These results are shown in 
Fig. 5 and they express one continuous rise of  the 
stability of  the flow in the transition from injection to 
suction in the laminar boundary layer. 

5. CONCLUSIONS 

The results obtained in these four reports give us 
an opportunity to make some basic conclusions : 
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Fig. 1. The neutral curves for the wave number A as a function of Reynolds number Re in the gas phase 

(~ = 1). 
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Fig. 2. The neutral curves for the phase velocity Cr as a function of Reynolds number Re in the gas phase 
(e = 1). 

(1) The flows in the boundary  layers with increas- 
ing velocity in the depth of the fluid ('Blasius flow') are 
characterized with the hydrodynamic stability, which 
increases with the rise of the tangential velocity com- 
ponent  on the interface and decreases from its normal  
component  in the transition from 'suction'  
(v < 0,f(0) > 0) to ' injection'  (v > 0,f(0) < 0) in the 

laminar boundary  layer. Hydrodynamic stability of 
this type of flow in the boundary  layer depends 'inde- 
pendently' ,  as on the normal  component  of velocity, 
on the interface and on the tangential component  of 
the interface velocity. 

(2) The flows in the boundary  layers with decreas- 
ing velocity in the depth of the fluid ( 'Couette flow') 



2596 CHR. BOYADJIEV and I. HALATCHEV 

3 5 0 0  

3 0 0 0  

2 5 0 0  

2 0 0 0  

1 5 0 0  ~ 

1000< 

5ooi 

0 
0 

{} -0.3 -'-t-- 0 -0.2 + O -o.1 

- -x-  0 .-o.1 -e-,, 0 =-0.2 ~ 0 --0.3 

I I f I 

0.1 0.2 0.3 0.4 0.5 

f' (o1 
~ 0 = 0 .  

Fig. 3. The influence of the tangential interface velocity component (f'(0)) on the stability of the flow 
(Re¢~). 
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are practically global stable, and they are not affected 
by changes in the normal and tangential component 
of the velocity on the interface (in the range of changes 
they were studied in refs. [2, 3]). 

(3) The systems with intensive interphase mass 
transfer are characterized by the fact that the kinetics 
of mass transfer do not  follow from the linear theory 
of the mass transfer, and the obvious changes in the 
hydrodynamic stability are observed. These effects 

have been explained very often [6-9] with the Mar- 
angoni effect, i.e. the induction of tangential sec- 
ondary flow on the phase boundary. The inves- 
tigations of the kinetics of mass transfer in the systems 
with intensive interphase mass transfer [10] and their 
hydrodynamic stability [2, 3] show that the same 
effects can be explained by the effect of  the non-linear 
mass transfer, i.e. the induction of normal secondary 
flows on the phase boundary. Consequently, it is poss- 



Linear stability in systems with intensive mass transfer--IV 2597 

R 4000 

, OOlooo 
6 0 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 I I I I I 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 

I f ' (0)-0.23 ~ f'(O)-0.40 n ,'(0)-0.11 × f'~(~))'~O ~. 
Fig. 5. The dependence of the critical Reynolds number Re~ from the normal component of velocity on 

interface f(0) at the condition of constant value of tangential interface velocity component f ' (0).  

ible to compare  the M a r a n g o n i  effect with  the effect 
of  the non- l inear  mass  transfer.  
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